Long-Term Regularity of Two-Dimensional Navier--Stokes--Poisson Equations

نویسندگان

چکیده

Related DatabasesWeb of Science You must be logged in with an active subscription to view this.Article DataHistorySubmitted: 18 November 2020Accepted: 04 June 2021Published online: 16 September 2021Keywordsplasma physics, long-term regularity, space-time resonance, viscous systemAMS Subject Headings35B34, 35B35, 35B65Publication DataISSN (print): 0036-1410ISSN (online): 1095-7154Publisher: Society for Industrial and Applied MathematicsCODEN: sjmaah

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feedback Boundary Stabilization of the Two-Dimensional Navier--Stokes Equations

We study the exponential stabilization of the linearized Navier-Stokes equations around an unstable stationary solution, by means of a feedback boundary control, in dimension 2 or 3. The feedback law is determined by solving a Linear-Quadratic control problem. We do not assume that the normal component of the control is equal to zero. In that case the state equation, satisfied by the velocity f...

متن کامل

Two-dimensional Stochastic Navier-stokes Equations with Fractional Brownian Noise

We study the perturbation of the two-dimensional stochastic Navier-Stokes equation by a Hilbert-space-valued fractional Brownian noise. Each Hilbert component is a scalar fractional Brownian noise in time, with a common Hurst parameter H and a specific intensity. Because the noise is additive, simple Wiener-type integrals are suffi cient for properly defining the problem. It is resolved by sepa...

متن کامل

Convergence of a Navier-stokes-poisson Approximation of the Incompressible Navier-stokes Equations

This paper studies the quasi-neutral limit of pressureless Navier-Stokes-Poisson equations in plasma physics in the torus T. For well prepared initial data the convergence of solutions of compressible Navier-Stokes-Poisson equations to the solutions of incompressible Navier-Stokes equations is justified rigorously by using the curl-div decomposition of the gradient. And a priori estimates with ...

متن کامل

Long Time Stability of High Order MultiStep Numerical Schemes for Two-Dimensional Incompressible Navier-Stokes Equations

The long-time stability properties of a few multistep numerical schemes for the two-dimensional incompressible Navier–Stokes equations (formulated in vorticity-stream function) are investigated in this article. These semi-implicit numerical schemes use a combination of explicit Adams–Bashforth extrapolation for the nonlinear convection term and implicit Adams–Moulton interpolation for the visco...

متن کامل

Long Time Stability of a Classical Efficient Scheme for Two-dimensional Navier-Stokes Equations

We prove that a popular classical implicit-explicit scheme for the 2D incompressible Navier–Stokes equations that treats the viscous term implicitly while the nonlinear advection term explicitly is long time stable provided that the time step is sufficiently small in the case with periodic boundary conditions. The long time stability in the L2 and H1 norms further leads to the convergence of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Siam Journal on Mathematical Analysis

سال: 2021

ISSN: ['0036-1410', '1095-7154']

DOI: https://doi.org/10.1137/20m1380995